Thermostability improvement of a Talaromyces leycettanus xylanase by rational protein engineering
نویسندگان
چکیده
منابع مشابه
Bioinformatics-driven, rational engineering of protein thermostability.
A longstanding goal in protein engineering is to identify specific sequence changes that endow proteins with desired functional properties. As opposed to traditional rational and random protein engineering techniques, we have employed a bioinformatic approach to identify specific sequence changes that influence key functional properties of a protein within a defined superfamily. Specifically, w...
متن کاملImprovement of the thermostability and catalytic efficiency of a highly active β-glucanase from Talaromyces leycettanus JCM12802 by optimizing residual charge–charge interactions
BACKGROUND β-Glucanase is one of the most extensively used biocatalysts in biofuel, food and animal feed industries. However, the poor thermostability and low catalytic efficiency of most reported β-glucanases limit their applications. Currently, two strategies are used to overcome these bottlenecks, i.e., mining for novel enzymes from extremophiles and engineering existing enzymes. RESULTS A...
متن کاملDeterminants for the improved thermostability of a mesophilic family 11 xylanase predicted by computational methods
BACKGROUND Xylanases have drawn much attention owing to possessing great potential in various industrial applications. However, the applicability of xylanases, exemplified by the production of bioethanol and xylooligosaccharides (XOSs), was bottlenecked by their low stabilities at higher temperatures. The main purpose of this work was to improve the thermostability of AuXyn11A, a mesophilic gly...
متن کاملEnhanced thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rational engineering of a glycine to proline mutation.
Protein thermostability can be increased by some glycine to proline mutations in a target protein. However, not all glycine to proline mutations can improve protein thermostability, and this method is suitable only at carefully selected mutation sites that can accommodate structural stabilization. In this study, homology modeling and molecular dynamics simulations were used to select appropriat...
متن کاملTerminal amino acids disturb xylanase thermostability and activity.
Protein structure is composed of regular secondary structural elements (α-helix and β-strand) and non-regular region. Unlike the helix and strand, the non-regular region consists of an amino acid defined as a disordered residue (DR). When compared with the effect of the helix and strand, the effect of the DR on enzyme structure and function is elusive. An Aspergillus niger GH10 xylanase (Xyn) w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2017
ISSN: 2045-2322
DOI: 10.1038/s41598-017-12659-y